研究方向
  • 下一代多场景多模态异构计算引擎

融合与统一批处理、交互式处理和流处理等多种计算模态,研究近似查询、渐进式执行等新技术,支持传统数据分析、图计算、机器学习等各种应用场景和计算需求下一代计算引擎。同时在计算引擎中研究利用GPU、FPGA、ASIC等异构硬件高效率和低延迟的计算性能,将异构硬件的计算能力与传统通用计算整合,更好地满足人工智能、高性能数据分析等计算密集型领域的计算需求。

  • 大规模多样性数据挖掘和机器学习算法及应用

研究在大规模多样性数据(如结构化数据、图数据、信息网络等)上的高效数据挖掘算法和机器学习算法,探索和融合大规模图表征学习、知识图谱等新技术,应用于在线反作弊、推荐系统、和提高搜索效能等场景,服务普惠到社会生活中。

  • 智能与自治化系统

将系统技术与人工智能技术相结合,利用人工智能技术在数据仓库管理、资源调度、引擎优化等各个方面的优势加强与改进系统;同时使用系统技术辅助人工智能中的模型选择、元参数搜索等工作,进行自动的元学习,从而帮助系统变得更加智能,更加安全可靠。

  • 数据安全和隐私保护

研究如何在数据采集、数据共享和数据呈现等多个可能泄露个人敏感信息的数据处理阶段有效保障数据安全和用户隐私,同时降低数据损耗并提供高效的数据分析能力。

  • 超大规模图计算

研究以深度学习和图计算结合的大规模图表征学习为代表的机器学习算法和基于图的知识图谱技术,研发新型架构的超大规模图计算引擎和超大规模知识图谱推理系统。在信息检索、分布式计算、大规模系统设计、机器学习、人工智能、自然语言处理等相关领域做出突破贡献。


产品及应用
  • 超大规模图推理引擎

    图形推理与深度学习相结合,在阿里巴巴的许多业务场景中取得了成功的分阶段结果。例如,个性化推荐系统是信息过滤的重要手段,可以根据习惯和爱好推荐合适的产品或服务。传统的推荐系统存在稀疏性、冷启动和信息可重复性的问题,而大规模图表示可以有效地利用自然人的全球信息。我们正在开发新一代图形学习平台,可以有效地对数十亿个节点和数万亿个边缘进行推理分析。

    了解更多
  • 电子商务反作弊解决方案

    反作弊大致分成渠道设备反作弊和流量反作弊。渠道设备反作弊的主要任务是识别可疑的模拟器、设备牧场等。我们从各种日志提取设备的各类稀疏和稠密特征,并对Google的Wide&Deep模型基于相关业务场景进行了有效的改造,每日可识别千万级高可信的作弊设备。流量的反作弊更多的是和业务场景强相关。通过进行全局的考虑和建模,聚合可疑流量,在同一个cluster内进行信息的增强和互借,进而提高模型的可信度。我们基于业务的需求和定义提出一系列图模型,每日可在全量流量日志中抓取数百万高可信的作弊cookie。此项成果也被《中国计算机学会通讯》和人工智能顶会IJCAI收录报道。

    了解更多

研究团队
周靖人达摩院智能计算实验室负责人

哥伦比亚大学计算机博士,IEEE Fellow。拥有几十篇顶级会议和期刊论文,并持有多项专利发明。研究领域包括基于大规模分布式系统的数据计算处理方法和机器学习算法平台。曾任微软研究院研究员、微软研发合伙人。

丁博麟达摩院智能计算实验室资深技术专家

伊利诺伊大学香槟分校博士。研究成果发表于SIGMOD等多个领域的顶尖国际会议,常年担任重要国际会议评审委员会评委。研究领域包括大规模数据的管理和分析等。曾担任美国微软研究院研究员。

钱正平达摩院智能计算实验室资深技术专家

华南理工大学博士。在系统及相关领域顶级会议发表多篇论文,并曾获EuroSys’12最佳论文奖。研究领域是分布式系统与数据并行计算。曾任微软亚洲研究院主管研究员。

杨红霞达摩院智能计算实验室资深算法专家

杜克大学博士。拥有顶级论文30余篇。曾任IBM Watson研究员、Yahoo!主任数据科学家等职。目前致力于研发新一代结合超大规模知识图谱和图计算的推理系统。

曾凯达摩院智能计算实验室高级技术专家

加州大学洛杉矶分校博士,曾在美国加州大学伯克利分校AMP Lab从事博士后研究。拥有顶级论文20余篇,获SIGMOD 2012年最佳论文奖等。研究领域包括大规模分布式系统和数据库系统。曾任微软资深科学家。

于文渊达摩院智能计算实验室资深技术专家

爱丁堡大学博士。研究成果发表于SIGMOD等多个领域的顶尖国际会议,曾获SIGMOD2017和VLDB2010最佳论文奖,VLDB2017最佳演示奖。研究领域包括数据质量管理、图数据管理与计算等。曾担任七桥科技CEO、美国Facebook 研究科学家等。


学术成果
论文
  • Zemin Liu, Vincent W. Zheng, Zhou Zhao, Hongxia Yang, Kevin Chen-Chuan Chang, Minghui Wu, Jing Ying. Subgraph-augmented Path Embedding for Semantic User Search on Heterogeneous Social Network. WWW, 2018.
  • Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester, Can Wang. ANRL: Attributed Network Representation Learning via Deep Neural Networks. IJCAI, 2018.
  • Ninghao Liu, Hongxia Yang, Xia Hu. Adversarial Detection with Model Interpretation. KDD, 2018.
  • Dawei Zhou, Jingrui He, Hongxia Yang, Wei Fan. SPARC: Self-Paced Network Representation for Few-Shot Rare Category Characterization. KDD, 2018.
  • Shen Xin, Weizhao Xian, Martin Ester, Hongxia Yang, Zhongyao Wnag, Jiajun Bu, Can Wang. Mobile access record resolution on large-scale identifier-linkage graphs. KDD, 2018.
  • Zemin Liu, Vincent W. Zheng, Zhou Zhao, Zhao Li, Hongxia Yang, Minghui Wu, Jing Ying. Interactive Paths Embedding for Semantic Proximity Search on Heterogeneous Graphs. KDD, 2018.
  • Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, Jingren Zhou. Real-time Constrained Cycle Detection in Large Dynamic Graphs. 43rd International Conference on Very Large Data Bases (VLDB), 2018.
  • Sheng Zhou, Hongxia Yang, Martin Ester, Jiajun Bu, Pinggang Yu, Can Wang, Jianwei Zhang and Xin Wang. PRRE: Personalized Relation Ranking Embedding for Attributed Network. 27th ACM International Conference on Information and Knowledge Management (CIKM), 2018.
  • Hongxia Yang, Yada Zhu, Jingrui He. Local Algorithm for User Action Prediction Towards Display Ads. 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2017.
  • Chenglong Wang, Feijun Jiang, Hongxia Yang. Hybrid Framework for Text Modeling with Convolutional RNN. 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2017.
  • Hongxia Yang. Bayesian Heteroscedastic Matrix Factorization for Conversion Rate Prediction. 26th ACM International Conference on Information and Knowledge Management (CIKM), 2017.
  • Hong Huang, Yuxiao Dong, Jie Tang, Hongxia Yang, Nitesh V. Chawla, Xiaoming Fu. Will Triadic Closure Strengthen Ties in Social Networks, ACM Transactions on Knowledge Discovery from Data (TKDD), 2017.
展开更多

扫描二维码
关注阿里技术微信公众号